On the new algebra related to the non-standard R-matrix

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L897
(http://iopscience.iop.org/0305-4470/26/18/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the new algebra related to the non-standard \boldsymbol{R}-matrix

S Meljanac \dagger and M Milekovic \ddagger
\dagger Rudjer Boskovic Institute, Bijenicka c.54, 41001 Zagreb, Croatia
\#Prirodoslovno-matematicki fakultet Zavod za teorijsku fiziku, Bijenicka c.32, 41000 Zagreb, Croatia

Received 11 May 1993

Abstract

We demonstrate that the new algebra associated to the non-standard R-matrix, investigated previously by Fei and Yue is related to the $\operatorname{SU}(2) Q^{-a l g e b r a}$ by a simple transformation. Criteria which identify equivalent quantum algebras are given.

In a recent letter [1] Fei and Yue investigated a quantum enveloping algebra related to the \hat{R}-matrix (a solution of the braid group)

$$
\hat{R}=\left(\begin{array}{cccc}
1 & & & \tag{1}\\
& 1+q & q & \\
& -1 & 0 & \\
& & & 1
\end{array}\right)
$$

They claim that the Fadeev-Reshetikhin-Takhtajan (FRT) quantization procedure [2], with (1) as input, yields a new quantum algebra. In this letter we explicitly show that the algebra found in [1] (equations (10)-(13)) is related to the well-known $\mathrm{SU}(2)_{Q}$ algebra. We also give a simple criteria which allows one to identify isomorphic algebras.

We recall fRT-equations which connect quantum enveloping algebras and \widehat{R} matrices [2]

$$
\begin{align*}
& \hat{R} L_{2}(\varepsilon) L_{1}\left(\varepsilon^{\prime}\right)=L_{2}\left(\varepsilon^{\prime}\right) L_{1}(\varepsilon) \hat{R} \\
& L_{1}(\varepsilon)=L(\varepsilon) \otimes 1 \quad L_{2}(\varepsilon)=1 \otimes L(\varepsilon)=P L_{1}(\varepsilon) P \\
& \left(\varepsilon, \varepsilon^{\prime}\right)=(+,+),(-,-),(+,-) \\
& L(+)=\left(\begin{array}{ccc}
L_{11}^{+} & \ldots & L_{n n}^{+} \\
0 & & L_{n n}^{+}
\end{array}\right) . \quad L(-)=\left(\begin{array}{ccc}
L_{11}^{-} & & 0 \\
L_{n 1}^{-} & \ldots & L_{n n}^{-}
\end{array}\right) \tag{2}
\end{align*}
$$

where P is the permutation operator in $V \otimes V$.
The entries $L_{i j}^{ \pm}$of the upper $(L(+))$ and lower $(L(-))$ triangular matrices are generators of the quantum algebra $A \equiv A\left(\hat{R}, L_{i j}^{ \pm}\right)$associated to a given \hat{R}-matrix.

The algebra $A\left(\hat{R}, L_{i j}^{ \pm}\right)$may be endowed with a Hopf (co-algebraic) structure in the usual way, by defining the coproduct Δ, the co-unit ε and the antipode S [2].

Let $A \equiv A\left(\hat{R}, L_{i j}^{ \pm}\right)$and $\mathscr{A} \equiv \mathscr{A}\left(\hat{\mathscr{R}}, \mathscr{L}_{i j}^{ \pm}\right)$be two quantum algebras, obtainable from the FRT-procedure (2). Then the following observations hold (see also [3]):
(i) A and \mathscr{A} are isomorphic as Hopf algebras if \hat{R}-matrices associated to them are related by the similarity (gauge) transformation of diagonal form (including scaling):

$$
\hat{R}=\lambda W^{-1} \hat{\mathscr{R}} W \quad \lambda \in C-\{0\}
$$

(ii) The generators $L_{i j}^{ \pm}$(of A) and $\mathscr{L}_{i j}^{ \pm}$(of \mathscr{A}) are related as

$$
\begin{aligned}
& L_{1}(\varepsilon)=P W^{-1} P \mathscr{L}_{1}(\varepsilon) W \\
& L_{2}(\varepsilon)=W^{-1} \mathscr{L}_{2}(\varepsilon) P W P
\end{aligned}
$$

(iii) The coproducts Δ (of A) and δ (of \mathscr{A}) are related as

$$
\Delta=W^{-1} \delta W
$$

Let us choose $\mathscr{A} \equiv \mathscr{A}\left(\hat{\mathscr{R}}, \mathscr{L}_{i j}^{ \pm}\right)$to be a one-parameter $\mathrm{SU}(2)_{Q^{-}}$-algebra associated to the \mathscr{K}_{Q}-matrix ${ }^{\text {- }}$

$$
\hat{\mathscr{R}}=\left(\begin{array}{cccc}
1 & & & \tag{3}\\
& 1-1 / Q^{2} & 1 / Q & \\
& 1 / Q & 0 & \\
& & & 1
\end{array}\right)
$$

and let $\left.A \equiv A\left(\hat{R}, L_{i j}^{ \pm}\right)\right)$be a two-parameter algebra $\operatorname{SU}(2)_{p, k}[4]$ associated to the $\hat{R}_{p, k}$ matrix

$$
\hat{R}=\left(\begin{array}{cccc}
1 & & & \tag{4}\\
& 1-1 / p k & 1 / p & \\
& 1 / k & 0 & \\
& & & 1
\end{array}\right)
$$

In an earlier paper [5] we showed that $\mathrm{SU}(2)_{p, k}$ is isomorphic (as a Hopf algebra) to $\mathrm{SU}(2)_{\mathcal{Q}}$, with $Q^{2}=p k$. The similarity transformation which establishes this isomorphism is

$$
\begin{align*}
& \hat{R}_{p, k}=W^{-1}(\eta) \hat{\mathscr{R}}_{Q} W(\eta) \\
& W(\eta)=\eta^{J_{0} / 2} \otimes \eta^{-J_{0} / 2} \\
& J_{0}=\frac{1}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \tag{5}\\
& \eta^{2}=p / k
\end{align*}
$$

With $k=-1, p=1 / q$ we obtain the \hat{R}-matrix (1) from the \hat{R}-matrix (4). Owing to observations (i)-(iii), the algebras associated to the \hat{R}-matrices (1) or (4) are isomorphic to $\operatorname{SU}(2)_{Q}$, with $Q^{2}=-1 / q$. From (5) and observation (iii) one can easily derive relations between co-algebraic structures.

Finally, we point out that the Hopf algebra in [1] (equations (12) and (13)) directly follows from the two-parameter algebra $\operatorname{SU}(2)_{p^{\prime}, k^{\prime}}$, discussed in $[5,6]$, with $p^{\prime}=-q^{1 / 2}$, $k^{\prime}=q^{1 / 2}, Q^{\prime 2}=p^{\prime} k^{\prime}=-q, \eta^{2}=p^{\prime} / k^{\prime}=-1$ and

$$
\begin{align*}
& H=J_{0} \\
& E^{ \pm}=((q+1) /(q-1))^{1 / 2}(-1)^{-1 / 2\left(J_{0} \mp 1 / 2\right) J_{\mp}} \tag{6}
\end{align*}
$$

where J_{0} and $J_{ \pm}$are generators of $\mathrm{SU}(2)_{Q}$. Hence, the algebra in [1], (equation (12)), is isomorphic to $\mathrm{SU}(2)_{Q^{\prime}}$ with $Q^{2 \prime}=-q$. Then the co-algebra in [1] (equation (13)) is defined as in [5], i.e. $\Delta=\Delta_{Q}, S=S_{Q}$ and $\varepsilon=\varepsilon_{Q}$, where the index Q^{\prime} refers to $\mathrm{SU}(2)_{Q}$.

Notice that for $q=-1(Q= \pm 1)$ the algebra in [1], equations (12) and (13), is equivalent to $S U(2)_{Q=1}$ and $S U(2)_{Q=-1}$. It is interesting to observe that there is a general isomorphism between $\mathrm{SU}(2)_{q}$ and $\mathrm{SU}(2)_{-q}$, which can be established using the transformations as in [5] (see also [7]).

To conclude, we have found no evidence for the new algebraic (and co-algebraic) structure related to the \hat{R}-matrix (1). Nevertheless, it is still an interesting question whether non-trivial new algebras can be found in connection with other 4×4 solutions of the braid (Yang-Baxter) equations [8]. Our criteria (i)-(iii) significantly simplify such an analysis. This topic is currently under investigation.

References

[1] Fei S M and Yue R H 1993 J. Phys. A: Math. Gen. 26 L217
[2] Fadeev L D, Reshetikhin N Yu and Takhtajan L A 1990 Leningrad Math. J. 1193
[3] Meljanac S and Milekovic M 1993 On the two-parameter deformations of SU(1, 1) algebras and associated spin chains Fizika (to appear)
[4] Burdik C and Hlavaty L 1991 J. Phys. A: Math. Gen. 24 L165
Burdik C and Hellinger P 1992 J. Phys. A: Math. Gen. 25 L629
[5] Meljanac S and Milekovic M 1993 On the Clebsch-Gordan coefficients for the two-parameter quantum algebra $\mathrm{SU}(2)_{p, f}$ J. Phys. A: Math. Gen. (to appear)
[6] Smimov F Yu and Wehrhahnn R F 1992 J. Phys. A: Math. Gen. 255563
[7] Chang D, Phillips I and Rozansky L 1992 J. Math. Phys. 333710
[8] Hlavaty L 1987 J. Phys. A: Math. Gen. 20 1661; 1992 J. Phys. A: Math. Gen. 25 L63
Fei S M, Guo H Y and Shi H 1992 J. Phys. A: Math. Gen. 252711
Hietarinta J 1992 Phys. Lett. 165A 245

